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Motivation

● Programs operate on data structures in memory
● How does data get into memory?



  

History

● In the old days, data was organized on disks in 
records.

● Programming languages defined how to 
interpret records.

● This is okay for tabular data, but requires you to 
define data types for everything, and stick to 
them.



  

Idea

● What if we make the on-disk format a bit more 
flexible and create the records only in memory?
– Data files become version independent, except if 

they use newer functions.

– We can work with things that are not necessarily 
tables.



  

Problem

● Data comes from disk as a stream of bytes
– The meaning of individual bytes depends on 

context.
 we need a ⇒ state machine to determine what to do 

with the data

– Data comes in chunks that don’t correspond to 
interpretation boundaries

 we need to keep buffers⇒



  

Recursive Descent

● State machine is implicit
– The program counter represents the current state

– The program stack represents the state stack

– Every token is read by dedicated code

– Every piece of code that accepts multiple bytes 
needs to deal with buffer underflows



  

Recursive Descent

read_file() {
read_header();
read_body();

}

read_header() {
read_version();
read_type();
read_name();

}

read_version() {
version = read_int();
check_version(version);

}

read_type() {
type = read_int();
check_type(type);

}

read_name() {
int length = read_int();
name = read_string(length);

}

…



  

Recursive Descent

int read_int() {
return

(get_byte() << 24) |
(get_byte() << 16) |
(get_byte() << 8) |
(get_byte() << 0);

}

string read_string(int length) {
string ret;
for(i = 0..length) {

ret += get_byte();
}
return ret;

}



  

Limitations

read_variable_declaration() {
read_var_keyword();
string var_name = read_word();
bool has_value = check_equals_sign();
if(has_value)

expression value = read_expression();
…

}

expression read_expression() {
expression current_expression;
if(check_int())

current_expression = read_int();
else if(check_string())

current_expression = read_string();
…



  

Limitations

expression read_expression() {
expression current_expression;
if(check_int())

current_expression = read_int();
else if(check_string())

current_expression = read_string();
else

current_expression = make_variable_reference(read_name());

if(check_end())
return current_expression;

if(check_plus()) {
skip_plus();
current_expression = make_plus_expr(

current_expression, read_expression());



  

Limitations

● So, lots of “check” functions, where we have to 
leave stuff in the buffer

● What about “a + b * c”?



  

Tokenizing

● Idea: Stack two state machines
● One of them reads the stream and tells the 

other what is next



  

Tokenizing

● When we see digits, we read all of them, and 
say “that’s an integer”

● When we see an opening quote, we read all the 
characters until the closing quote and say 
“that’s a string”

● When we see a plus sign, we say “that’s a plus 
sign”

● Anything else is just a name



  

Tokenizing

read_expression() {
switch(get_token_type()) {

case INT: current_expression = get_int(); break;
case STRING: current_expression = get_string(); break;
case NAME: current_expression = make_variable_reference(

get_name()); break;
default: ERROR();

}

switch(get_token_type()) {
case SEMICOLON: return current_expression;
case PLUS: current_expression = make_plus_expr(

current_expression, read_expression());
default: ERROR();

}
}



  

Tokenizing

● Better
● Still doesn’t handle precedence
● Still lots of typing



  

Precedence

● Idea: Hierarchy of states
● We always try to use the highest precedence 

operator
● If that doesn’t work, we try a lower precedence



  

a + b * c

● Wrong: (a + b) * c
● Right: a + (b * c)
● Treat “a” as multiplication until it’s clear that 

there is no “*” there.
● Treat “b * c” as another multiplication
● Then sum up the products



  

Generating a Parser

● Still, lots of typing
● All the functions kind of look the same
● We can generate them from an easier 

description



  

Backus-Naur-Form (BNF)

expression: sum

sum: multiplication | sum ‘+‘ multiplication

multiplication: parenthesis | multiplication ‘*‘ parenthesis

parenthesis: term | ‘(‘ expression ‘)‘

term: LITERAL | VARIABLE



  

Generating a Parser

● Lots of generated code
● Lots of states where the next token collapses 

the state stack quite a bit
● So generated recursive descent is not optimal
● Also, we still need to tokenize



  

Generating a Lexer

LITERAL: /[0-9]+/

VARIABLE: /[a-z][a-z0-9]*/



  

Fitting It All Together

● So, we can now generate a state machine that 
reads a byte stream and produces a token 
stream

● We can also generate a state machine that 
reads a token stream and recognizes BNF

● All we need is to execute some code when 
we’ve recognized something



  

Fitting It All Together

● Tokens can have optional values, like integers 
or strings

● BNF rules are also tokens, and have values 
(like the return values in the recursive descent 
parser)



  

BNF + Actions

expression: sum { $$ = $1 }

sum: multiplication { $$ = $1 } |
sum ‘+‘ multiplication { $$ = make_sum($1, $3); }

multiplication: parenthesis { $$ = $1 } |
multiplication ‘*‘ parenthesis { $$ = make_mult($1, $3); }

parenthesis: term { $$ = $1 } | ‘(‘ expression ‘)‘ { $$ = $2; }

term: LITERAL { $$ = $1 } | VARIABLE { $$ = $1 }



  

BNF + Actions

expression: sum

sum: multiplication |
sum ‘+‘ multiplication { $$ = make_sum($1, $3); }

multiplication: parenthesis |
multiplication ‘*‘ parenthesis { $$ = make_mult($1, $3); }

parenthesis: term | ‘(‘ expression ‘)‘ { $$ = $2; }

term: LITERAL | VARIABLE



  

Lex and Yacc

● Lex generates a Lexer
– Regular expressions

– Code fragment when recognized

● Yacc generates a Parser
– BNF rules

– Code fragment when recognized



  

CODE



  

Advanced: Locations

● The lexer counts characters
● When you recognize a newline, you can just 

reset the column count and increment the line 
count, and you know where it is

● This is really useful for error messages



  

Advanced: Error Handling

● When an unexpected token appears, parsing 
fails

● You can define rules that have “error” tokens in 
them that match whenever something cannot 
be understood

● The action should record the error and try to 
make sense of the rest



  

Advanced: Memory Management

● When a parsing error occurs, the current token 
is discarded, and we go up the stack until we 
find a rule that has an “error” token here.

● If the current token value is something we 
allocated, we need to free it

● There are special declarations for that



  

Advanced: Precedence

%prec ‘(‘
%prec ’*‘ ‘/‘ 
%prec ‘+‘ ‘-‘

expr: ‘(‘ expr ‘)‘ |
expr ‘+‘ expr |
expr ‘-‘ expr |
expr ‘*‘ expr |
expr ‘/‘ expr |
term



  

Advanced: Pure Parsers

● You really don’t want global variables in your 
program

● Especially if you have multiple parsers
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