

Simon Richter
@GyrosGeier@mastodon.social

Parsing with lex/yacc

Motivation

● Programs operate on data structures in memory
● How does data get into memory?

History

● In the old days, data was organized on disks in
records.

● Programming languages defined how to
interpret records.

● This is okay for tabular data, but requires you to
define data types for everything, and stick to
them.

Idea

● What if we make the on-disk format a bit more
flexible and create the records only in memory?
– Data files become version independent, except if

they use newer functions.

– We can work with things that are not necessarily
tables.

Problem

● Data comes from disk as a stream of bytes
– The meaning of individual bytes depends on

context.
 we need a ⇒ state machine to determine what to do

with the data

– Data comes in chunks that don’t correspond to
interpretation boundaries

 we need to keep buffers⇒

Recursive Descent

● State machine is implicit
– The program counter represents the current state

– The program stack represents the state stack

– Every token is read by dedicated code

– Every piece of code that accepts multiple bytes
needs to deal with buffer underflows

Recursive Descent

read_file() {
read_header();
read_body();

}

read_header() {
read_version();
read_type();
read_name();

}

read_version() {
version = read_int();
check_version(version);

}

read_type() {
type = read_int();
check_type(type);

}

read_name() {
int length = read_int();
name = read_string(length);

}

…

Recursive Descent

int read_int() {
return

(get_byte() << 24) |
(get_byte() << 16) |
(get_byte() << 8) |
(get_byte() << 0);

}

string read_string(int length) {
string ret;
for(i = 0..length) {

ret += get_byte();
}
return ret;

}

Limitations

read_variable_declaration() {
read_var_keyword();
string var_name = read_word();
bool has_value = check_equals_sign();
if(has_value)

expression value = read_expression();
…

}

expression read_expression() {
expression current_expression;
if(check_int())

current_expression = read_int();
else if(check_string())

current_expression = read_string();
…

Limitations

expression read_expression() {
expression current_expression;
if(check_int())

current_expression = read_int();
else if(check_string())

current_expression = read_string();
else

current_expression = make_variable_reference(read_name());

if(check_end())
return current_expression;

if(check_plus()) {
skip_plus();
current_expression = make_plus_expr(

current_expression, read_expression());

Limitations

● So, lots of “check” functions, where we have to
leave stuff in the buffer

● What about “a + b * c”?

Tokenizing

● Idea: Stack two state machines
● One of them reads the stream and tells the

other what is next

Tokenizing

● When we see digits, we read all of them, and
say “that’s an integer”

● When we see an opening quote, we read all the
characters until the closing quote and say
“that’s a string”

● When we see a plus sign, we say “that’s a plus
sign”

● Anything else is just a name

Tokenizing

read_expression() {
switch(get_token_type()) {

case INT: current_expression = get_int(); break;
case STRING: current_expression = get_string(); break;
case NAME: current_expression = make_variable_reference(

get_name()); break;
default: ERROR();

}

switch(get_token_type()) {
case SEMICOLON: return current_expression;
case PLUS: current_expression = make_plus_expr(

current_expression, read_expression());
default: ERROR();

}
}

Tokenizing

● Better
● Still doesn’t handle precedence
● Still lots of typing

Precedence

● Idea: Hierarchy of states
● We always try to use the highest precedence

operator
● If that doesn’t work, we try a lower precedence

a + b * c

● Wrong: (a + b) * c
● Right: a + (b * c)
● Treat “a” as multiplication until it’s clear that

there is no “*” there.
● Treat “b * c” as another multiplication
● Then sum up the products

Generating a Parser

● Still, lots of typing
● All the functions kind of look the same
● We can generate them from an easier

description

Backus-Naur-Form (BNF)

expression: sum

sum: multiplication | sum ‘+‘ multiplication

multiplication: parenthesis | multiplication ‘*‘ parenthesis

parenthesis: term | ‘(‘ expression ‘)‘

term: LITERAL | VARIABLE

Generating a Parser

● Lots of generated code
● Lots of states where the next token collapses

the state stack quite a bit
● So generated recursive descent is not optimal
● Also, we still need to tokenize

Generating a Lexer

LITERAL: /[0-9]+/

VARIABLE: /[a-z][a-z0-9]*/

Fitting It All Together

● So, we can now generate a state machine that
reads a byte stream and produces a token
stream

● We can also generate a state machine that
reads a token stream and recognizes BNF

● All we need is to execute some code when
we’ve recognized something

Fitting It All Together

● Tokens can have optional values, like integers
or strings

● BNF rules are also tokens, and have values
(like the return values in the recursive descent
parser)

BNF + Actions

expression: sum { $$ = $1 }

sum: multiplication { $$ = $1 } |
sum ‘+‘ multiplication { $$ = make_sum($1, $3); }

multiplication: parenthesis { $$ = $1 } |
multiplication ‘*‘ parenthesis { $$ = make_mult($1, $3); }

parenthesis: term { $$ = $1 } | ‘(‘ expression ‘)‘ { $$ = $2; }

term: LITERAL { $$ = $1 } | VARIABLE { $$ = $1 }

BNF + Actions

expression: sum

sum: multiplication |
sum ‘+‘ multiplication { $$ = make_sum($1, $3); }

multiplication: parenthesis |
multiplication ‘*‘ parenthesis { $$ = make_mult($1, $3); }

parenthesis: term | ‘(‘ expression ‘)‘ { $$ = $2; }

term: LITERAL | VARIABLE

Lex and Yacc

● Lex generates a Lexer
– Regular expressions

– Code fragment when recognized

● Yacc generates a Parser
– BNF rules

– Code fragment when recognized

CODE

Advanced: Locations

● The lexer counts characters
● When you recognize a newline, you can just

reset the column count and increment the line
count, and you know where it is

● This is really useful for error messages

Advanced: Error Handling

● When an unexpected token appears, parsing
fails

● You can define rules that have “error” tokens in
them that match whenever something cannot
be understood

● The action should record the error and try to
make sense of the rest

Advanced: Memory Management

● When a parsing error occurs, the current token
is discarded, and we go up the stack until we
find a rule that has an “error” token here.

● If the current token value is something we
allocated, we need to free it

● There are special declarations for that

Advanced: Precedence

%prec ‘(‘
%prec ’*‘ ‘/‘
%prec ‘+‘ ‘-‘

expr: ‘(‘ expr ‘)‘ |
expr ‘+‘ expr |
expr ‘-‘ expr |
expr ‘*‘ expr |
expr ‘/‘ expr |
term

Advanced: Pure Parsers

● You really don’t want global variables in your
program

● Especially if you have multiple parsers

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

