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Introduction
● Who am I?

– Stefan Laufmann (Loofmann)
– loofmann@afra-berlin.de

● What do I do?
– study of Computer Engineering (Msc.) @ TU Berlin

● Why do I know this stuff?
– interest in design of digital systems
– took a course in the last semester: “Computer Arithmetics: 

Circuit Perspective“ by Dr. Ahmed Elhossini
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What is this talk about?
● digital systems (circuits) for arithmetic functions
● arithmetic functions as in:

– addition, multiplication, division
● numbers as in:

– unsigned integers
● digital circuits as in: A

B
Cin

S

Cout

Carry-block

Tc
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Outline
1. Define our measure
2. Addition – the straightforward way
3. Addition – the clever way
4. Multiplication – done precisely
5. Multiplication – done not so precisely
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Ex: Design Process of Digital Systems
How are digital systems designed? (from my experience)

1.  design circuit on whiteboard
2.  describe circuit in HDL (Verilog, VHDL)
3.  throw powerfull and awful software tools at it
4.  get a circuit out
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Define our Measure
What makes a “good” circuit?
– area used on final chip
– speed of the circuit: critical path delay
How do you measure this?
– e. g. for CMOS technology

● smallest area is that of 1 inverter (α)
● shortest delay is that of 1 inverter (Δ)

critical path
longest logical path through a circuit
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Addition – the straightforward way
● adding two bits and carry bit is easy (seen above)

How to add two numbers (e. g. 4 bit)?
– add each bit position one after the other

1-bit 
Full 

Adder

1-bit 
Full 

Adder

1-bit 
Full 

Adder

1-bit 
Full 

AdderC 3 C 2 C 1 C 0C 4

A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0

S 3 S 2 S 1 S 0

source: https://en.wikipedia.org/wiki/Adder_
%28electronics%29#/media/File:4-
bit_ripple_carry_adder.svg
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Addition – the straightforward way (2)
How to add multiple numbers?
– add each operand one after the 

other
What are the downsides of 
this?
– consumes large area on the chip
– high delay due to long critical 

path

source: TU Berlin, Computer Arithmetics: Circuit 
Perspective; lecture 3, slide 21
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Ex: Dot Diagrams aka dotagrams

7 6 5 4 3 2 1 0

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ● ● ● ●

● technique to visualize the structure or arithmetic operations
● also used for computer arithmetic
● dot represents binary digit

example for multiplication of two 4-bit numbers
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Addition – the clever way
● ways to speed up addition of two operands:

– carry-lookahead adder
– conditional sum adder
– carry-select adder
How to speed up the addition of multiple 
operands?
– use so called “counters”:

● 3:2
● 4:2
● m:n
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Addition – the clever way (2)
● a full-adder is called 3:2-counter
● addition of two bits can be seen as 

counting the 1's in the two operands
● with only little overhead there can also 

be a 4:2-counter
● these counters can be combined to easily 

add multiple operands

●

●

●

●

●

●

●

●

●

●

●
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Addition – the clever way (3)
● ● ● ● x0

● ● ● ● x1

● ● ● ● x2

● ● ● ● x3

● ● ● ● x4

● ● ● ● x5

● ● ● ● s_012 =p1

● ● ● ● c_012 = p2

● ● ● ● s_345 = p3

● ● ● ● c_345 = p4

● ● ● ● ● s_p1p2p3 = q1

● ● ● ● c_p1p2p3 = q2

● ● ● ● ● s_p4q1q2

● ● ● ● c_p4q1q2

● ● ● ● ● ● ● result

● addition of six 4-bit 
numbers in a so called 
“carry save adder”

● 4 rows of 3:2-counters
● 1 final full adder
● total area: 15FA + 1HA 

+ 6bit adder
● delay: 4 stages of FA

Note:
Different counter types can 
be mixed but CMOS 
technology processes benefit 
from regular structures.
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Multiplication – done precisely
● in fact multiplication is just addition
● different multiples of one factor get added 

according to the bits in the other factor
e. g.:

– 11012 * 10012 = 1*11012 + 8*11012 = 11101012

(13 * 9 = 117)
● the multiples – called partial products – get 

shifted according to the bit position they 
originated from
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Multiplication – done precisely (2)
● 3:2-counters or 4:2-counters are used to add 

partial products
● this is – again – the straightforward way

Is there a better way?
Yes! 
– For example: multipliers using booth-encoding
– use the fact that partial products occur more than 

ones in the multiplication
– this reduces the number of partial products to add
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Multiplication – done precisely (3)
● Radix-4 Booth Multiplier:

1) take 3 digits from the multiplicand (start from the right)
2) generate partial product according to the digits
3) take next 3 digits (2 steps to the left from last ones)
4) repeat 2 – 3 until no digits left
5) add all partial products

digits from multiplicand factor for partial 
product digits from multiplicand factor for partial 

product

0 0 0 0 1 0 0 -2

0 0 1 1 1 0 1 -1

0 1 0 1 1 1 0 -1

0 1 1 2 1 1 1 0

Note: Here we deal with signed integers (two's complement). This influences the addition circiut!
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Multiplication – done precisely (4)
Give me numbers!

source: TU Berlin, Computer Arithmetics: Circuit Perspective; lecture 6, slide 37
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Multiplication – done not so precisely
● precise results not always required

Maybe we can figure out a way to do do multiplication 
different and faster but with a small error?

John N. Mitchell. “Computer Multiplication and Division Using Binary Logarithms”.
In: Electronic Computers, IRE Transactions on EC-11.4 (Aug. 1962), pp. 512–517.
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Multiplication – done not so precisely (2)
● it is proven that:

a*b = log-1(log(a*b)) = log-1(log(a)+log(b))
● if we have an efficient (anti-)logarithm for binary 

numbers we can save the multiplication
● approximate binary logarithm:

– find position of most significant 1, treat it as integer part of 
result

– rest of number becomes fraction part of result
– e. g.: log(1101)  11.101≈ log(13)  3.625≈

● anti-logarithm is the reversion of this process
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Multiplication – done not so precisely (3)
● the multiplication is then 

performed as:
1.  compute approx. log
2.  add
3.  compute approx. anti-log

● easy solution for 
functions with 
multiplication and 
division

● picture shows circuit for:
●  f =√ A⋅B⋅C

D
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The last slide, yeah!

Questions?


